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Abstract. Most differentially private algorithms assume a central
model in which a reliable third party inserts noise to queries made on
datasets, or a local model where the data owners directly perturb their
data. However, the central model is vulnerable via a single point of fail-
ure, and the local model has the disadvantage that the utility of the
data deteriorates significantly. The recently proposed shuffle model is
an intermediate framework between the central and local paradigms.
In the shuffle model, data owners send their locally privatized data to
a server where messages are shuffled randomly, making it impossible
to trace the link between a privatized message and the corresponding
sender. In this paper, we theoretically derive the tightest known dif-
ferential privacy guarantee for the shuffle models with k-Randomized
Response (k-RR) local randomizers, under histogram queries, and we
denoise the histogram produced by the shuffle model using the matrix
inversion method to evaluate the utility of the privacy mechanism. We
perform experiments on both synthetic and real data to compare the
privacy-utility trade-off of the shuffle model with that of the central one
privatized by adding the state-of-the-art Gaussian noise to each bin. We
see that the difference in statistical utilities between the central and the
shuffle models shows that they are almost comparable under the same
level of differential privacy protection.

Keywords: Differential privacy · Shuffle model · Privacy-utility
optimization

1 Introduction

As machine learning and data analysis using sensitive personal data are becom-
ing more and more popular, concerns about privacy violations are also increasing
manifold. The most successful approach to address this issue is differential pri-
vacy (DP). Most research performed in this area probes two main directions. One
is the so-called central model, in which a trusted third party (the curator) collects
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the user’s personal data and obfuscates them with a differentially private mecha-
nism. The other is the local model, where the data owners apply the mechanism
themselves on their data and send the perturbed data to the collector. A major
drawback of the central model is that there is the risk that the curator may be
corrupted. On the other hand, in the local model, there is no need to rely on a
trusted curator. However, since each record is obfuscated individually, the utility
of the data is substantially deteriorated compared to the central model.

In order to address the problem of the loss of utility in the local model, an
intermediate paradigm between the central and the local models, known as the
shuffle model (SM) of differential privacy, was recently proposed [5]. As an initial
step, the shuffle model uses a local mechanism to perturb the data individually
like the local model. The difference is that, after this first step of sanitization, a
shuffler uniformly permutes the noisy data to dissolve their link with the corre-
sponding data providers. Since a potential attacker is oblivious to the shuffling
process, the data providers obtain two layers of privacy protection: injection of
random noise by the local randomizer and anonymity by data shuffling. This
allows the shuffle model to achieve a certain level of privacy protection using
less noise than the local model.

The privacy guarantees provided by the shuffle model have been rigorously
analyzed in several studies. More specifically, given a local mechanism with a
level of privacy parameterised by ε0 (pure local DP) or (ε0, δ0) (approximate
local DP), the aim is to derive a (ε, δ) bound on the level of differential pri-
vacy guaranteed by applying shuffling on top of the local mechanism. In this
paper, we derive the tight (ε, δ)-DP guarantee for the shuffle model with the
k-RR local mechanism by using the concept of (ε, δ)-adaptive differential pri-
vacy (ADP) proposed by Sommer et al. in [15]. Next, we consider the question
of how convenient the shuffle model is for publishing histograms in terms of the
privacy-utility trade-off as opposed to the central model.

We perform various experiments on both synthetic and real data (the Gowalla
dataset) and compare the utilities of the two models calibrated with the same
privacy parameters. As expected, the utility of the central model is better than
that of the shuffle model, consistent with what was observed in the literature [6].
However, in our case, the gap is very small – namely the histograms resulting
from the shuffle model, once de-noised, are almost as close to the original ones
as those of the central model. The contributions of this paper are as follows.

1. we derive an analytical form of the tight differential privacy guarantee for
the shuffle model with k-RR local randomizer under histogram queries, and
therefore, show that the shuffle model, essentially, provided a higher level of
DP guarantee than what is known by the community, for the same level of
locally injected noise to the data.

2. using the tight bound of the (ε, δ)-DP provided by the shuffle model, as
derived, we compare the privacy-utility trade-off of the shuffle model and the
optimized Gaussian mechanism for the histogram queries and show that their
performances are comparable.
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2 Related Work

Recently, intensive research on shuffle models of differential privacy has been
done in various directions. One of the major research directions in this area
is the study of privacy amplification by shuffling [3,10]. Erlingsson et al. [10]
analysed the privacy amplification of the local randomizer’s privacy protection
by shuffling. Balle et al. [3] introduced the idea of privacy guarantee in shuffle
models and quantitatively analyzed the relationship between the privacy param-
eter ε and the number of participants in the shuffle protocol. Feldman et al. [11]
improved Balle et al.’s results and suggested an asymptotically optimal depen-
dence of the privacy amplification on the privacy parameter of the local ran-
domizer. However, neither [3] nor [11] explicitly theorize any guarantee for the
tightness of the bounds for the privacy guarantee of shuffle models. Koskela et al.
[14] proposed computational methods to estimate tight bounds based on weak
adversaries – however, they are not expressed by an analytical formula, they
can only be computed via an algorithm. Sommer et al. introduced the notion of
adapted differential privacy (ADP) in [15] and laid down specific conditions to
achieve the tight (ε, δ)-ADP for any abstract and high-level probabilistic mecha-
nism. To derive the tight DP guarantees for SMs, we adapt Sommer et al.’s result
and obtain necessary and sufficient conditions for achieving δ that warrants the
best (ε, δ)- DP guarantee in SMs with a k-RR local randomizer.

3 Preliminaries

Definition 1 (Differential privacy [9]). For a certain query, a randomizing
mechanism K is (ε, δ)-differentially private (DP) if for all adjacent datasets, D1

and D2, and all S ⊆ Range(K), we have:

P[K(D1) ∈ S] ≤ eε
P[K(D2) ∈ S] + δ

Definition 2 (Adaptive differential privacy [15]). For x0, x1 ∈ X , where
X is the space of the original data, and for a member u in the dataset, a ran-
domizing mechanism K is (ε, δ)-adaptive differentially private (ADP) for x0 and
x1 if for all datasets, D(x0) and D(x1), and all S ⊆ Range(K), we have:

P[K(D(x0)) ∈ S] ≤ eε
P[K(D(x1) ∈ S] + δ

where D(x0) and D(x1) are datasets differing only in the entry of the fixed
member u: D(x) means that u reports x for every x ∈ X , keeping the entries of
all the other users the same.

Remark 1. K is (ε, δ)-DP implies that K is (ε, δ)-ADP for every x0, x1 ∈ X .

Definition 3 (Tight DP (or ADP) [15]). Let K be (ε, δ)-DP (or ADP for
x0, x1 ∈ X ). We say that δ is tight for K (w.r.t. ε and x0, x1 in case of ADP)
if there is no δ′ < δ such that K is (ε, δ′)-DP (or ADP for x0, x1).
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Definition 4 (Local differential privacy [8]). Let X denote a possible alpha-
bet for the original data and let Y be the alphabet of noisy data. A randomizing
mechanism R provides ε-local differential privacy (LDP) if for all x1, x2 ∈ X ,
and all y ∈ Y, we have

P[R(x1) = y] ≤ eε
P (R(x2) = y)

Definition 5 (k-Randomized Response [13]). Let X be a discrete alphabet
of size k. Then k-randomized response (k-RR) mechanism, RkRR, is a locally
differentially private mechanism that stochastically maps X onto itself (i.e., Y =
X ), given by

RkRR(y|x) =

{
c eε , if x = y

c, , otherwise

for any x, y ∈ X , where c = 1
eε+k−1 .

Definition 6 (Shuffle model [10]). Let X and Y be discrete alphabets for
the original and the noisy data respectively. For any dataset of size n ∈ N, the
shuffle model (SM) is defined as M : X n �→ Yn, M = S ◦ Rn, where

– R : X �→ Y is a local randomizer, stochastically mapping each element of
the input dataset, sampled from X , onto an element in X , providing ε0-local
differential privacy.

– S : Yn �→ Yn is a shuffler that uniformly permutes the finite set of messages
of size n ∈ N, that it takes as an input.

A SM can be perceived as having a sequence of messages going through
the mechanism M and then coming out as the frequencies of each of the noisy
messages, as the idea of the layer of “shuffling” is to randomize the noisy messages
w.r.t. their corresponding senders by a random permutation. Let us call this
particular brand of query on SM as the histogram query.

Definition 7 (Histogram query [2]). Let X and Y be discrete alphabets for
the original and the noisy data respectively. For any dataset of size n ∈ N, the
histogram query on SM, M : X n �→ R

+n, is defined as M = T ◦ Rn, where

– R : X �→ Y is a local randomizer providing ε0-local differential privacy, as in
Definition 6.

– T : Yn �→ R
n is a function that gives the frequency of each message in finite

set of messages of size n ∈ N, that it takes as an input.

In other words, if we have a dataset DX = (x1, . . . , xn) ∈ X n, then
DY = M(DX ) = T ((R(x1), . . . ,R(xn)) = (s1, . . . , sn), where si = ni/n with
ni denoting the number of times R(xi) occurs in DY .

Definition 8 (Privacy loss random variable [15]). For a probabilistic mech-
anism mapping messages from the alphabet of original messages to the alphabet
for noisy messages, M : X �→ Y, let us fix x0, x1 ∈ X and a potential output
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y ∈ Y. The privacy loss random variable of y for x0 over x1 is defined as: where
M(xi) is the probability distribution of the noisy output for the original input xi

for i ∈ {0, 1}.

LM(x0)/M(x1)(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+∞
{

P(M(x0) = y) 	= 0,

P(M(x1) = y) = 0

ln P(M(x0)=y)
P(M(x1)=y)

{
P(M(x0) = y) 	= 0,

P(M(x1) = y) 	= 0
−∞ o.w.

(1)

Definition 9 (Privacy loss distribution [15]). Let P1 and P2 be two prob-
ability distributions on Y (the finite alphabet for noisy messages). The privacy
loss distribution, ω, for A over B is defined as:

ω(u) =
∑

y:LA/B(y)=u

P(A = y) for all u ∈ U , where U =
⋃
y∈Y

{LA/B(y)} ⊂ R .

4 Tight Privacy Guarantee for SM

4.1 Overview

Sommer et al. in [15] proposed a notion of adaptive differential privacy and
derived a very important sufficient and necessary result for any probabilistic
mechanism to have the best formal privacy guarantee. Adaptive differential pri-
vacy essentially translates the idea of a differential privacy guarantee with respect
to a chosen pair of elements in the dataset. Exploiting this result (Result 1), we
derived the necessary and sufficient condition needed to warrant the best DP
guarantee for SM with the most popularized LDP satisfying local randomizer,
the k-RR mechanism. This essentially draws the tight DP guarantee that an SM
can induce being locally randomized with a k-RR mechanism. At the crux of
this paper, the importance of deriving the tight DP guarantee by SM under the
k-RR local randomizer implies that we show that the SM provides a higher level
of privacy than what is known by the existing work in the literature that focuses
on improving the privacy bound for the SM.

Table 1. Value of δ derived from the existing work and our proposed result

[10] [3] [11] [14] Proposed tight δ

ε = 0.1 0.97 0.229 0.066 9.01E-4 2.38E-28

ε = 0.2 0.89 0.002 1.91E-5 1.89E-6 1.61E-42

ε = 0.3 0.77 1.77E-6 2.43E-11 2.19E-10 5.22E-57

ε = 0.4 0.64 5.95E-11 1.35E-19 3.14E-16 5.14E-72
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Table 1 presents the values of δ obtained from the results in [3,10,11,14] and
the proposed derivation in (6) of this paper, by varying ε from 0.1 to 0.4, fixing
n = 100 and ε0 = 0.5. We observe that, indeed, the value of δ computed from (6)
in Definition 11 is significantly less compared to the other existing improvements
proposed, highlighting that our proposed result engenders the best possible DP
guarantee for SMs under the k-RR local randomizer.

4.2 Framework

Let X = (x0, . . . , xk−1) be the alphabet of messages of size k ∈ N, k > 1 and
U be the set of all users involved in the environment. For simplicity, we assume
the alphabets of the original and noisy messages to be the same, both being X .
Therefore, the local randomizer of our shuffle mechanisms locally sanitizes the
dataset by mapping original messages sampled from X to elements of X .

Let ε0 be the privacy parameter of RkRR, which is used as the local ran-
domizer for the shuffle mechanisms discussed in this paper. Furthermore, letting
DX be the dataset of the original messages of n users, each of which is sampled
from (and obfuscated to) X , we denote DX z as the original message of z ∈ U in
DX for any z ∈ U. Let DY = Rn

kRR(DX ) = {RkRR(DX z) : z ∈ U} be the noisy
dataset going through RkRR.

For the purpose of analysing the adaptive differential privacy, let us fix a
certain user, u ∈ U, whose data is in DX . Since the only major distinction that
k-RR mechanism makes in the process of mapping a datum from its original
value to the obfuscated value is whether the original value and the obfuscated
value are the same or not (i.e., the probability that the x is being reported as
x′ is the same for every x′ ∈ X when x 	= x′), it is reasonable for us to study
the adaptive differential privacy guarantee with respect to a couple of potential
original messages of u, say x0, x1 ∈ X , x0 	= x1 in the environment where the
shuffle model uses a k-RR local randomizer.

The idea behind adaptive differential privacy w.r.t. x0, x1 is to make it signif-
icantly difficult to predict whether u’s original message is x0 or x1. In the context
of this work, since we will be focusing on the case of having the local randomizer
as the k-RR mechanism, the only gravity x1 holds as far as the shuffle model
is concerned is the fact that it is different from x0. Thus x1 could represent
any x ∈ X such that x 	= x0. Therefore, we shall be analysing the privacy of
u’s original message being x0 and compare its privacy level of being identifiable
with a different potential original message, which we fix as x1 w.l.o.g. Let’s call
x0 as the primary input for u and x1 be the secondary input. For a fixed set of
values reported by every user in U \ {u}, let D(x0) represent the edition of the
dataset where u reports x0, and let D(x1) represent the one where u reports x1.

The most important result from literature - Lemma 5 in [15] - that is heavily
exploited in this paper is as follows:
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Result 1: (Lemma 5 [15]) For every probabilistic mechanism M : X �→ Y,
for any x0, x1 ∈ X and any ε, δ(ε) > 0, M is tightly (ε, δ)-ADP for x0, x1 iff

δ(ε) = ω(∞) +
∑

u∈U\{∞,−∞}
u>ε

(1 − eε−u)ω(u) (2)

4.3 Theorems and Results

As we are interested in finding ε > 0 and, correspondingly, δ > 0 that provide
a tight ADP guarantee for M for x0, x1, we define the constants κ1, κ2, κ3 to
simplify the mathematical results derived in the subsequent sections as follows:

κ1 :=
eε0(eε0 + k − 2)

k − 1
(3)

κ2 :=
k − 1

eε0 + k − 2
(4)

κ3 :=
(k − 1)nx0 (eε0 + k − 2)n−nx0−s

(eε0 + k − 1)n
(5)

Remark 2. Note that κ1, κ2, κ3 > 0 for any ε0 > 0, n ∈ N, k ∈ N≥2, s ∈ N.

From now on we shall focus on the histogram query of the shuffle model.
For the same ε0-LDP mechanism RkRR to be used as the local randomizer
for histogram query, let M = T ◦ RkRR denote the shuffle model that takes
in a sequence of original messages, obfuscates them locally using RkRR, and
broadcasts the frequency of each message in the noisy dataset. In other words,
having u having xi as her original message for i ∈ {0, 1}, M(D(xi)) =
(Mx0(xi), . . . ,Mxk−1(xi)) where Mxj

(xi) is a random variable giving the fre-
quency of xj ∈ X in the noisy dataset, DY , obfuscated by RkRR. Assuming
that u’s original data is x0 (w.l.o.g.), let nx0 denote the number of times x0 has
appeared in DX for the original entries from all users in U \ u.

Definition 10. By Definition 8, the privacy loss random variable for the his-
togram query for shuffle model of x0 over x1 with respect to a certain output
s ∈ N, in M is vs(x0, x1) = ln P(Mx0 (x0)=s)

P(Mx0 (x1)=s) .

Definition 11. For s ∈ {0, . . . , n}, r ∈ {0, . . . , s}, let μ(s, r) =
(
nx0

r

)(
n−nx0

s−r

)
κr
1

and τr = κ2(n − nx0) + (eε0 − κ2)(s − r). For any ε > 0, let us define

δ̂(ε) :=
n∑

s=0

1{vs(x0,x1)>ε}(1 − eε−vs(x0,x1))
κ3

n − nx0

s∑
r=0

μ(s, r)τr (6)

where 1E is the indicator function for any event E.
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Theorem 1. For any ε > 0, we get the tight (ε, δ)-ADP guarantee for M with
respect to x0, x1 iff δ = δ̂(ε) as in as in (6) of Definition 11 where

vs(x0, x1) = ln

⎛
⎜⎜⎝κ2 +

(eε0−κ2)
n−nx0

(
s∑

r=0
(s − r)

(
nx0

r

)(n−1−nx0
s−1−r

)
κr
1

)
s∑

r=0

(
nx0

r

)(
n−nx0

s−r

)
κr
1

⎞
⎟⎟⎠.

Corollary 1. For any ε > 0, we get the tight (ε, δ)-DP guarantee for M iff:

δ(ε) :=
n∑

s=0

1{vs>ε}(1 − eε−vs)
κ3

n − nx0

s∑
r=0

μ(s, r)τr (7)

where vs = maxx0,x1∈X vs(x0, x1) and vs(x0, x1) is as derived in Theorem 1.

5 Evaluating the Utility of the Shuffle Model

It is crucial to have the tight bound in the privacy guarantee for shuffle models
to be able to conduct a fair comparison of utilities of shuffle models with other
forms of differential privacy under a certain level of privacy protection.

Suppose with ε, δ, we get a tight (ε, δ)-ADP guarantee for M w.r.t. x0 as the
primary input. We wish to compare how the utility of M would perform against
that of a central model of differential privacy for histogram query implemented
on DX with the same privacy parameters ε and δ. For this, we will be sticking
to the most optimal framework, known until now [4], of one of the most popular
mechanisms for the central model for (ε, δ)-DP: the Gaussian mechanism. The
details of the theoretical build-up are provided in Appendix B.

In [7], Cheu et al. give theoretical evidence that the accuracy of the SM lies in
between the central and local models of DP. However, no experimental analysis
had been performed to dissect how low the accuracy of SMs lies when compared
to the central model when both provide the same level of privacy protection.
Thus, the main goal of our experiments was to empirically show the scale of
difference in accuracy between SM and the central model by comparing their
statistical utilities under the tight and equal DP guarantee. To do this end, we
compared the statistical approximation of the true distribution from the SM with
k-RR local randomizer to that of the central model by applying the Gaussian
mechanism [4], using the value of δ derived from (6), ensuring the tight (ε, δ)-DP
guarantee.

5.1 Experimental Results on Synthetic Data

In this section, we carry out an experimental analysis to illustrate the com-
parison of utilities for histogram query of the shuffle model using k-RR local
randomizer and the optimal Gaussian mechanism using synthetically generated
data sampled from N (0, 2). We experimented and demonstrated our results in
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the two categories: (i) trend analysis of δ providing the tight ADP guarantee
for M and (ii) utility comparison between N and M under the same level of
differential privacy.

To analyze the values of δ providing a tight ADP guarantee for M, we change
the values of ε, ε0, n, n0, and k that enable us to see the change in the trend
of δ. For comparing the utilities of the central model and the shuffle model,
we considered δ̂ as in (15), providing the worst possible tight ADP over every
x0, x1 ∈ X , and therefore, by Remark 1, a DP guarantee. Table 2 shows the
default values of the parameters used for the experiment.

Table 2. Experimental parameters used for synthetic data

Parameter name Values

ε 0.1 to 3

ε0 0.1 to 3

n 50, 100, 150, 1000, 100000

x0 1 to 15

k 5, 10, 15

Tight δ for Histogram Queries. We show the experimental results for deriv-
ing δ providing (ε, δ)-ADP guarantee, as given by Theorem 1, by changing the
values for ε, ε0, n and k. We use the total variation distance, dTV (.), to evalu-
ate W(M) and W(N) – the “distances” of the estimated original distribution
obtained from shuffle model with k-RR local randomizer, using matrix inver-
sion, (shuffle+INV), and the distribution sanitized with Gaussian mechanism
from the original distribution itself. Table 3 shows δ when we vary ε, for three
categories:

(a) We change ε0, fixing nx0 = 80, n = 100, and k = 10. We observe that
δ decreases as ε increases for the same ε0, and δ increases as ε0 increases
under a fixed value of ε. When it does not satisfy the vs > ε condition of
equation (57), δ becomes 0. For a fixed ε and ε0, a high value of δ decreases
the level of privacy protection. Thus, experimentally, we can validate that
for a constant ε, δ increases as ε0 used for k-RR increases, ensuring that
the privacy protection of the shuffle model decreases with a decrease in the
privacy level of its local randomizer.

(b) We vary n fixing k = 10, ε0 = 2, and nx0 = 80. For the same ε, δ becomes
smaller as the value of n increases. A lower δ means higher privacy protec-
tion, reassuring that the shuffle model provides higher privacy protection as
the number of users (samples) increases.

(c) We alter k fixing n = 100, ε0 = 2, and nx0 = 80. As the value of k increases,
δ decreases. This is also due to the characteristic of the k-RR mechanism,
which is used as the local randomizer for M. The inference probability for a
potential adversary decreases as the size of the domain for the data increases.
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Table 3. Tight δ for different ε

Varying ε0

ε = 0.1 ε = 0.5 ε = 1.0 ε = 1.5 ε = 2.0 ε = 2.5 ε = 3.0

ε0 = 1 2.08E-20 3.42E-43 0 0 0 0 0

ε0 = 2 2.49E-15 3.25E-22 2.20E-30 1.57E-40 0 0 0

ε0 = 3 8.79E-11 5.73E-13 3.52E-16 4.49E-20 1.09E-25 4.52E-33 0

Varying n

n =50 1.91E-08 5.02E-12 2.40E-15 4.49E-21 0 0 0

n =100 2.49E-15 3.25E-22 2.20E-30 1.57E-40 0 0 0

n =150 6.58E-22 7.83E-32 2.75E-44 6.99E-59 0 0 0

Varying k

k =5 1.96E-10 2.51E-14 1.08E-19 2.02E-27 0 0 0

k =10 2.49E-15 3.25E-22 2.20E-30 1.57E-40 0 0 0

k =15 1.66E-18 7.13E-28 1.49E-38 7.35E-50 0 0 0

Comparing the Utility of the Shuffle and the Central Models. In this
section, we compare the utilities of the central model and the shuffle models,
providing the same level of privacy protection. For neutral comparison, we per-
form the experiments into two cases: individual specific utility and community
level utility, as described in Appendix B. We use the total variation distance to
estimate the difference between original distribution and estimated distributions.

Table 4. Individual specific utility comparison of central and shuffle models for syn-
thetic data (ε = 4)

x0 n = 1, 000 n = 100, 000

Gaussian shuffle+INV Gaussian shuffle+INV

1 3E-3 1E-3 6E-6 3E-3

3 6E-4 2E-4 1E-5 5E-4

5 12E-4 11E-4 1E-5 5E-4

7 1E-4 4E-3 8E-6 3E-5

Table 4 shows the results from the experimental analysis of comparing the
individual specific utilities of M and N as the primary input, x0, is changed.
We performed the experiments for the case of n = 1, 000 and n = 100, 000,
setting ε0 = 4, ε = 4, and k = 15, calculating δ for each x0. When n = 1, 000,
shuffle+INV is comparable with the Gaussian mechanism, depending on the
value of x0. However, when n is 100, 000, the Gaussian mechanism shows better
results regardless of x0. This is explained through our choice of δ (given by
Theorem 1), which depends on nx0 , which, in turn, varies with x0 and that
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Gaussian mechanism inserts fixed noise regardless of n. However, even for a large
value of n, the utility of shuffle+INV, although slightly worse than the Gaussian
mechanism, is quite good as W(M, x0) remains very low across different x0.

For the community level utility, we apply the worst case (highest value) of δ

computed over all the primary inputs for all the users in U, given as δ̂ in (15),
to sanitize all input messages of the dataset – thus establishing the worst tight
ADP guarantee possible on the shuffle model. This is used to determine the
community level utility of the corresponding shuffle model with the estimated
differential privacy guarantee. Similar to the case of individual specific utility,
experiments were performed for the case of n = 1, 000 and n = 100, 000, and
the other parameters used for the experiment being the same. The experiments
results are similar to what we showed for individual specific utility. When n is
small, the utility of shuffle model is almost as much as that of the central model.
As n increases, the utility of the Gaussian mechanism, N, improves slightly over
that of the shuffle model under the same level of differential privacy, however
they still are fairly close (Fig. 1).

5.2 Experimental Results on Real Data

Now we focus on the experimental results obtained using real location data
from the Gowalla dataset [12]. Figure 2 illustrate the estimations of the original
distributions of location data from San Francisco and Paris, respectively. We
sanitize the original distribution using the shuffle model giving a tight differential
privacy guarantee with parameters ε and δ̂, as in (15). We use the same ε and
δ̂ to privatize the original data using the Gaussian mechanism as same in the
previous experiment, thus getting a (ε, δ̂)-DP guarantee for both cases.

Fig. 1. (a) and (b): Location data from Gowalla check-ins from a northern part of San
Francisco and a part of Paris. (c) and (d) give the heatmap of the locations in the areas
of San Francisco and Paris as an alternative visualization.
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To compare the utility of the two mechanisms under the same privacy level,
we estimate the original distributions using shuffle+INV for the shuffle model
and the Gaussian mechanism itself for the central model, as described in (13) and
(14) and evaluate how far the corresponding estimations lie from the original dis-
tributions. We observe that the Gaussian mechanism approximates the original
distributions slightly better than the shuffle+INV, but they are comparable.

Fig. 2. Estimation of the original distribution from the noisy data obfuscated with the
Gaussian mechanism and the SM in San Francisco and Paris dataset

As we observe in the previous experiment results, the number of samples,
ε affects the utility. In Fig. 3, we show how the number of samples and the
differential privacy parameters affect the utilities in more detail. In summary,
we observe a consistency with the existing work in the trend of the Gaussian
mechanism having a better utility than the shuffle model across all settings.
However, when the number of samples is small and the privacy level is low, the
utilities of the shuffle model and the central model are comparable.

Figure 3 (a) and (b) illustrate the evaluation of the TV distance between the
original and the estimated distributions for San Francisco dataset. n ranges from
10, 000 to 100, 000, which is used to sample locations from the aforementioned
San Francisco region. We set ε = 4 and ε = 6 to capture the change of distance
between the original and the estimated distributions by varying n. We use δ̂,
as in (15), to calculate community-level utility and we run the mechanism 10
times to obtain the boxplots. The results exhibit that shuffle model,M, gives
worse utility than the central model Nε,δ̂, and shuffle+INV shows better utility
than shuffle. This trend is harmonious across the different settings for ε. It is
reassuring to observe that the shuffle+INV is slightly closer or comparable with
the Gaussian mechanism especially when the value of n is small (n = 10, 000)
and the privacy level is low (ε = 6). Figure 3 (c) and (d) shows the TV distance
between the estimated and the original distributions and the utility difference
for locations in Paris dataset with n ranging from 1,000 to 10,000 and the other
parameters being the same as the experiments for the San Francisco dataset.
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Fig. 3. Illustrating the comparison of community level utilities between Gaussian, shuf-
fle and shuffle+INV for varying n and ε in San Francisco and Paris dataset

The overall trend of TV distance for the dataset of Paris is the same as that
of San Francisco. Again, we observe that the utility of the shuffle+INV is better
than that of just shuffle with k-RR, and the utilities of the shuffle+INV and the
optimal Gaussian mechanism are almost indistinguishable when the number of
samples and the privacy level are low. As we see from the heatmaps in Fig. 2,
when the value of ε is 4, both the Gaussian mechanism and shuffle+INV generate
results very close to the original distribution. Individual-specific utilities for the
Paris and San Francisco datasets are described in Table 5.

Table 5. Individual specific utility comparison of central and shuffle models for Gowalla
data (ε = 4, ε0 = 4)

x0 San Francisco x0 Paris

Gaussian shuffle+INV Gaussian shuffle+INV

40 4E-6 1E-3 20 2E-6 3E-4

80 3E-5 5E-4 40 3E-5 2E-3

120 9E-6 1E-3 60 4E-5 2E-3

160 4E-5 2E-4 80 5E-5 4E-4

200 2E-5 2E-4 100 7E-5 1E-4
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6 Conclusion

In this paper, we have compared the privacy-utility trade-off of two different
models of differential privacy for histogram queries: the classic central model with
the optimal Gaussian mechanism and the shuffle model with k-RR mechanism
as the local randomizer, enhanced with post-processing to de-noise the resulting
histogram. In order to do this comparison, we needed to derive the tight bounds
for the level of privacy provided by the shuffle model, so that we could tune the
parameters of the Gaussian mechanism to provide the same privacy.

First, we have used a result on the condition for tightness of ADP given
by Sommer et al. in [15] and translated it in the context of shuffle models,
giving rise to a closed form expression of the least δ for any ε and, thus, we
obtained a necessary and sufficient condition to have the tight DP guarantee
for the shuffle models. This result shows that the differential privacy ensured by
the shuffle models under a certain level of local noise is much higher than what
has been known by the community so far. Then, we performed experiments on
synthetic and real location data from San Francisco and Paris, and we compared
the statistical utilities of the shuffle and the central models. We observed that,
although the central model still performs better than the shuffle model, only ever
so slightly – the gap between their statistical utilities is very small and tends to
vanish as the number of samples is small.
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A Proof of Theorem Theorem 1

Setting p = P[x0|x0], p = P[x0|y 	= x0] in RkRR, ∀s ∈ [n], P[Mx0(x0) = s]

= p
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Using elementary combinatorial identities, we reduce to:
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By similar arguments as above, for any s ∈ {0, . . . , n}, P[Mx0(x1) = s]
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Using Result 1, for every k > 2 and s ∈ {0, 1, . . . , n}, we can say that M induces
a tight (ε, δ)-ADP guarantee with respect to x0, x1 ∈ X for any ε > 0 and δ iff
δ is defined as:

δ(ε) =
∑

v:v>ε

(1 − eε−v)
n∑

s=0

v=ln
P[Mx0 (x0)=s]
P[Mx0 (x1)=s]

P[Mx0(x0) = s] (10)

Using the expressions derived for P[Mx0(x0) = s] and P[Mx0(x1) = s] in (8)
and (9), respectively, to get vs:
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Combining (10) and (11), δ(ε) =
n∑

u:u>ε;s=0

v=ln
P[Mx0 (x0)=s]
P[Mx0 (x1)=s]

(1 − eε−v)P[Mx0(x0) = s]

=
n∑

s=0

1{vs>ε}(1 − eε−vs)P[Mx0(x0) = s]

=
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κ3
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[Substituting P[Mx0(x0) = s] from (8)].

B Theoretical outline

In M, we extend the idea of ADP to a non-adapted, general DP by using the
highest value of δ across the primary inputs of every member in U, for a fixed
ε. This essentially ensures the worst possible tight differential privacy guarantee
for the shuffle model. After that, we focus on estimating the original distribution
of the primary initial dataset.

Let R−1
kRR denote the inverse1 of the probabilistic mechanism RkRR, which is

used as the local randomizer for M. Note that R−1
kRR and RkRR are both k × k

stochastic channels as |X |= k. Staying consistent with our previously developed
notations, let us, additionally, introduce HN broadcasting the frequencies of the
elements in X after they have been sanitized with N. In other words, HN =
Nε,δ(DX ) = (Hx0 , . . . , Hxk−1), where Hxi

is the random variable giving the
frequency of xi after DX has been obfuscated with Nε,δ.

Since both M and N are probabilistic mechanisms, to estimate their utilities
we study how accurately we can estimate the true distribution from which DX
is sampled, after observing the response of the histogram queries in both the
scenarios.
1 the inverse of a k-RR mechanism always exists [1,13].
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Let π = (πx0 , . . . , πxk−1) be the distribution of the original messages in D(x0).
Our best guess of the original distribution by observing the noisy histogram going
through the Gaussian mechanism is the noisy histogram itself, as E(Hxi

) = nπxi

for every i ∈ {0, . . . , k − 1}.
However, in the case where D(x0) is locally obfuscated using RkRR and the

frequency of each element is broadcast by the shuffle model M, we can use
the matrix inversion method [1,13] to estimate the distribution of the original
messages in D(x0). So M(D(x0))R−1

kRR (referred as shuffle+INV in the exper-
iments) should be giving us π̂ = (π̂x0 , . . . , π̂xk−1) – the most likely estimate of
the distribution of each user’s message in D(x0) sampled from X – where π̂xi

denotes the random variable estimating the normalised frequency of xi in D(x0).

E(π̂) = E(M(D(x0))R−1
kRR) = πRkRRR−1

kRR = π (12)

We recall that M provides tight (ε, δ)-ADP for x0, x1, where δ is a function
of ε0, ε, and x0 – essentially M privatizes the true query response for x0 to be
identified as that for any x1 	= x0. On the other hand, Nε,δ ensures (ε, δ)-DP,
which essentially means it guarantees (ε, δ)-ADP for every xi ∈ X . Therefore,
in order to facilitate a fair comparison of utility between the central and shuffle
models of differential privacy under the same privacy level for the histogram
query, we introduce the following concepts:

i) Individual specific utility: Suppose the primary input of u is x0. Individual
specific utility refers to measuring the utility for the specific message x0 in the
dataset D(x0) in a certain privacy mechanism. In particular, the individual
specific utility of x0 in D(x0) for M is

W(M, x0) = |nπ̂x0 − nπx0 |,

and that for Nε,δ is

W(Nε,δ, x0) = |nπx0 − Hx0 |

ii) Community level utility: Here we consider the utility privacy mechanisms
over the entire community, i.e., all the values of the original dataset, by
measuring the distance between the estimated original distribution obtained
from the observed noisy histogram and the original distribution of the source
messages itself.

In particular, fixing any ε0 > 0 and ε > 0, the community level utility for
M is

W(M) = d(nπ̂, nπ), (13)

and that for Nε,δ
2 is

W(Nε,δ) = d(HNε,δ
, nπ), (14)

where d(.) is any standard metric3 to measure probability distributions over
a finite space.

2 where δ is correspondingly obtained using Result 1.
3 we consider Total Variation Distance for our experiments.
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For an equitable comparison between M and N, we take the worst tight
ADP guarantee over every user’s primary input and call this the community
level tight DP guarantee for M. That is, for a fixed ε0, ε > 0, we have M
satisfying (ε, δ̂)-DP as the community level tight DP guarantee if

δ̂ = max
x∈X

{δ : M is tightly (ε, δ(x))-ADP for x ∈ DX } (15)

Therefore, we impose the worst tight ADP guarantee on M over all the
original messages with ε and δ̂, implying that M now gives a (ε, δ̂)-DP
guarantee by Remark 1, placing us in a position to compare the community
level utilities of the shuffle and the central models of DP under the histogram
query for a fixed level of privacy. In particular, we juxtapose W(M) with
W(Nε,δ̂), as seen in the experimental results with location data from San
Francisco and Paris in Fig. 3.
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